
Weyl-invariant random Hamiltonians and their relation to translational-invariant random

potentials on Landau levels

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 3945

(http://iopscience.iop.org/0305-4470/23/17/024)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 08:56

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 23 (1990) 3945-3952. Printed in the UK 

Weyl-invariant random Hamiltonians and their relation to 
translational-invariant random potentials on Landau levels 

Kurt Broderix, Nils Heldt and Hajo Leschke 
Institut fiir Theoretishe Physik, Universitat Erlangen-Niirnberg, StaudtstraDe 7, D- 
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Abstract. We construct and discuss classes of random Hamiltonians on the infinite- 
dimensional Hilbert space of a quantum system with a Euclidean configuration space. 
By construction, the corresponding probability distributions are invariant under the 
action of the Weyl group. For particular classes of Weyl-invariant random Hamilto- 
nians we establish a relation to translational-invariant random potentials restricted 
to the Hilbert space of a single Landau level, that is, an eigenspace of the stan- 
dard Hamiltonian for a charged particle confined to the plane and subjected to a 
perpendicular constant magnetic field. 

1. Introduction 

Physical systems, whose properties are unknown in detail, are often successfully de- 
scribed by models possessing both fixed as well as randomly chosen properties. 

Prominent models are provided by random matrices caricaturing a complicated 
Hamiltonian on one of its finite-dimensional invariant subspaces of the physical Hilbert 
space. The probability distributions of these random matrices are typically chosen 
to be invariant under transformations which conserve the most important physical 
symmetries. Initially, they have been studied to understand the spectra of highly 
excited heavy nuclei (Mehta 1967, Brody e2 a1 1981). More recent applications are 
in the field of mesoscopic electronic systems (Brody e2 a1 1981) and quantum chaos 
(Seligman and Nishioka 1986, Sait6 and Aizawa 1989). 

Other models, often studied in the context of disordered electronic systems, are 
standard Hamiltonians with a random potential acting as an operator on an infinite- 
dimensional Hilbert space (Lifshitz e t  a1 1988, Kirsch 1989). A topic of recent interest 
is the random Landau model, that is, the standard Hamiltonian of a charged particle 
constrained to the plane and under the influence of a perpendicular constant magnetic 
field and a random potential. It is believed that this model is adequate to describe 
the localization phenomena in two-dimensional electronic structures (Landwehr 1987, 
1989). A simplification of the model, valid for high magnetic fields, is often made 
by restricting the Hamiltonian to  the still infinite-dimensional subspace of a single 
Landau level. 

The aim of the present paper is twofold. First, we construct and discuss classes of 
random Hamiltonians on the infinite-dimensional Hilbert space of a quantum system 
with a Euclidean configuration space. By construction, the corresponding probability 
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distributions are invariant under the action of the Weyl group (Barut and Raczka 
1980). Second, for particular classes of Weyl-invariant random Hamiltonians we es- 
tablish a relation to translational-invariant random potentials on single Landau levels. 

In order to  illustrate the relation, we infer from known results (Wegner 1983, 
Brbzin et a1 1984, Klein and Perez 1985) the averaged spectral function for those 
Weyl-invariant random Hamiltonians which are related to delta-correlated random or 
white-noise potentials on the lowest Landau level. 

2. Weyl-invariant random Hamiltonians 

To begin with, we consider a quantum mechanical system whose configuration space 
is the real line R. As usual the system’s observables corresponding to the position and 
the momentum are represented by the Hermitian operators Q and P acting on the 
Hilbert space L2(R) of square-integrable complex-valued functions on Iw. They obey 
the canonical commutation relation 

(i/fi) ( P Q  - Q P )  = 1. (2 .1)  

Throughout the paper we make use of a set of coherent-state vectors (Klauder and 
Skagerstam 1985, Perelomov 1986) 

associated with a normalized reference vector I@) and labelled by points ( p ,  q )  of the 
classical phase space 

These states resolve the identity operator in the sense 

For a fixed I@), we choose to quantize a classical Hamiltonian h : R2 - IR to  the 
Hamiltonian 

( 2 . 5 )  

of the quantum system acting as an Hermitian operator on L2(R). 
When h is not a prescribed but a random field, equation (2.5) defines a corre- 

sponding random Hamiltonian H .  In the following we will only consider homogeneous 
random fields (Gel’fand and Vilenkin 1964). For these fields the probability distribu- 
tion of the shifted field h ( p - p ’ ,  q-q ’ )  equals the one of h ( p ,  q ) .  Denoting the associated 
average by an overbar, homogeneity is equivalent to the fact that the characteristic 
functional 
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does not change its value, when the function j (p ,  q)  is replaced by j (p  + p’, q + q’ ) .  The 
homogeneity of the random field h implies the Weyl invariance of the corresponding 
random Hamiltonian H ,  meaning that the Weyl-transformed random Hamiltonian 
exp{i(p’Q - q’P)/h} Hexp{-i(p’Q - q / P ) / h }  has the same distribution as H .  Equi- 
valently, the characteristic functional 

exp [-i (JH)1 = W,) &iP, !?I := (@(P, (111 J M P ,  q) )  (2.7) 

does not change its value, when the operator J on L2(IR) is replaced by 
exp{-i(p‘Q - q’P)/h} Jexp{i(p’Q - q / P ) / h } .  The Weyl invariance follows from the 
commutation relation (2.1) in the form 

Weyl-invariant random Hamiltonians are different from random standard Hamil- 
tonians $ P2 + U ( & )  arising from (spatially) translational-invariant classical random 
potentials ~ ( q ) .  While random standard Hamiltonians are often used in the theory 
of disordered electronic systems (Lifshitz et a1 1988, Kirsch 1989), see also the next 
section, Weyl-invariant random Hamiltonians are similar to the unitary-invariant ran- 
dom matrices (Mehta 1967, Brody et  a1 1981) considered for modelling heavy nuclei 
and quantum chaos (Seligman and Nishioka 1986, Saito and Aizawa 1989). 

For Weyl-invariant random Hamiltonians one in particular obtains 

for a wide class of complex-valued functions f : IR ----i @. Because of the irreducibility 
of P and Q on L2(IR), equation (2.9) implies that fo is proportional to the identity 
operator. The proportionality factor in general depends on the reference vector I@) 
and the probability distribution of the random field h ,  for example 

- -  
H = h(0,O) 1 

(2.10) 

However, for simple random fields, as the constantly correlated random fields 

C ( j )  = I d &  S ( E  - h(0,O)) exp 

and the Cauchy-Lorentz white-noise field 

(-i& Jdpdv j (P,  d )  (2.11) 

= exp -7 dpdq l j (P1O)  ( J  Y > 0 

f ( H )  does not depend on I@). In these cases it is given by 
- 

(2.12) 

(2.13) 
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and depends only on the one-point probability density S ( E  - h(0,O)). While in the 
case (2.11) this probability density is arbitrary, for (2.12) it reads 
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7/r b ( E  - h(0,O)) = - 
E2 + 7 2 ’  

(2.14) 

For a proof of (2.13) we refer to the Chernoff-type representation (Berezin 1972, 
1975, Exner 1985, Klauder and Skagerstam 1985) 

and to  an argumentation analogous to  one given by Broderix et a1 (1987). 
For more general random fields h and general reference vectors \a) we have no 

explicit results, at least not for general functions f .  
In the following we will gain further insight for the particular case, where I@) 

is chosen as the nth eigenvector IQ,) of a one-dimensional harmonic oscillator with - 
frequency w > 0 and unit mass 

$ ( P 2  + wzQ2)  = 

( a n  ISLO = ‘n*nl 

W 

n=O 

W 

(2.16) 

(2.17) 

By this choice the scalar product of the coherent-state vectors (2.2) is explicitly given 
as 

Here 

1 dn 
Ln(c) := - e(- (e-( <”) 

n! d<, (2.19) 

is the Laguerre polynomial of nth order. 
We denote the Hamiltonian (2.5) corresponding to h and I@) = IQ,) by H,. For 

n = 0 the underlying quantization rule is nothing else but antinormal ordering (Cahill 
and Glauber 1969, Berezin 1971). 

3. Relation to translational-invariant random potentials on Landau levels 

In this section a connection between the above defined random Hamiltonians H, and 
random potentials on the subspace of the nth Landau level is established. 

The operators of momentum and position on the Hilbert space L2(R2) of square- 
integrable functions on the plane R2 are symbolized by (PI, Pz)  and (Q1, Q?), respec- 
tively. 
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In the symmetric gauge the Hamiltonian IC for a charged particle with unit mass 
in the plane subjected to a perpendicular constant magnetic field is given by 

I< = 4 (Pl + 4wQ2)' + i (Pz - fuQl)" (3.1) 

Here w > 0 denotes the cyclotron frequency of the system. We write the spectral 
resolution of IC as 

m .. 

K = hw ( n  + f )  E, 
n=O 

where E, is the projection operator on the subspace E,L2(IR2) of the nth Landau 
level ( n  + 4 ) h w .  One has 

00 

E,?E,, = a , , , ,~ ,  E, = 1. (3.3) 
n=O 

The position representation of En reads 

compare with equation (2.18). 

construct the Hermitian multiplication operator 
In contrast to  (2.5), we now use the one-dimensional classical Hamiltonian h to 

on L2(R2) where the function 

for fixed frequency w ,  is interpreted as a classical potential for the charged particle in 
the plane and V as its quantum counterpart. 

Besides this potential V we consider the Hamiltonian H, defined in (2.5) with 
respect to IQ,) (On[. Then the following identity 

W 
( ' 1 , 2 2 1  Enf(EnVEn)En 12:,2/2) = 2nfi ('n(uz1,22)I f(Hn) IQn(wx:,26)) (3.7) 

holds for a wide class of functions f : Iw --+ C. This is a consequence of (3.3) and 
(3.4). For n = 0 the above identity has been used by Daubechies and Klauder (1986) 
in their definition of Feynman path-integrals by means of Wiener regularization. 

If h is a random field with a given distribution, the distributions of the induced 
random Hamiltonian H ,  and the random potential V are fully determined. If, in 
addition, the distribution of h is chosen so that the distribution of v is independent of 
w,  the Hamiltonian IC + V on L2(R2) characterizes the random Landau model. For 
high magnetic fields it seems reasonable to  neglect a possible mixing between Landau 
levels, that  is, to  investigate E,"& E,(K + V)E, instead of IC + V .  To  study the 
contribution of E,(K + V ) E ,  on the subspace E,L2(R2) of the nth Landau level, the 
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identity (3.7) can be applied. Often, for very high magnetic fields the model is even 
restricted to the subspace EoL2(R2) of the lowest Landau level. 

Summarizing, homogeneous random fields h generate both Weyl-invariant random 
Hamiltonians H ,  on L2(R) and translational-invariant random potentials V on L2(R2) 
which are related through (3.7). In particular, the corresponding averaged spectral 
functions may be written as 

with the same probability density pn on the real line R. The first two moments of pn 
can be obtained from (2.10) in combination with (2.18). The proportionality (3.8) is 
due to the remark below (2.9). To our knowledge the proportionality (3.9) was first 
shown for general n and general translational-invariant random potentials by Klein 
and Perez (1985). Here it follows from applying (3.8) to (3.7) after averaging. As a 
consequence of (3.9) and (3.4) the averaged density of states per area of the random 
Landau model, restricted to the subspace of the nth Landau level, is seen to be 

It is of considerable interest that po can explicitly be calculated for general homo- 
geneous white-noise fields. These fields are defined by characteristic functionals of the 
form 

/ .  \ 

(3.11) 

where a H exp{phg(a)} has to be the Fourier transform of a probability distribution 
on the real line for all p > 0 (Gel’fand and Vilenkin 1969). 

The result implied by (3.11) reads 

03 

pO(c)  = :Im { E In [ [dr exp (2nier + 2nh [ $ g ( b / h ) ) ]  ) (3.12) 

as has been shown by Wegner (1983) and BrCzin e t  a1 (1984) in the context of the 
random Landau model; see also (Klein and Perez 1985) for a non-perturbative deriva- 
tion. Due to the absence of a length scale in (3.11) the spectral probability density is 
independent of the frequency w ,  provided g is independent of w.  

As it should be, (3.12) is consistent with (2.13) for the Cauchy-Lorentz white-noise 
field, g(a )  = --ylal. Another example, being most similar to the prominent Gaussian 
random matrices (Mehta 1967, Brody e2 a1 198l), is the Gaussian white-noise field, 
that is, g(a)  = -v2a2/2. In this case po exhibits Gaussian tails for I E ~  + 00. For a 
picture see (BrCzin et a1 1984). 

4. Additional remarks 

We close with four remarks. 
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(i) It would be interesting to find spectral quantities more general than those in 
(3.8) and (3.9),  for example 6 ( ~  - H,) A &(E' - H,) with a non-random operator A .  

(ii) The generalization of the statements in section 2 to systems with the d- 
dimensional configuration space IRd is merely a matter of notation. 

(iii) The relation (3.7) of Weyl-invariant random Hamiltonians to translational- 
invariant random potentials on Landau levels can be generalized to d > 2 by consid- 
ering d non-interacting particles in the plane. 

(iv) Extensions to non-flat configuration spaces require non-trivial modifications, 
possibly along some lines in Berezin (1975) and Klauder and Onofri (1989). 

Note added. 
tails for general homogeneous Gaussian random fields 

Recently we have succeeded in showing that the spectral function exhibits Gaussian 

1 -  1 - h 6 ( ~  - H )  = -- lim 
c - i o o  &2 21-2 ' 

The constant is given by the variational problem 

In a forthcoming publication we will supply a proof and determine r2 explicitly for IQ) = In,) and 
the Gaussian covariance 

h ( p ,  q )  h ( ~ ,  0 )  - h ( ~ ,  0l2 = 0 2  exp [ - ( p 2  + w2 9 2 )  / 2 ~ 2 w 2 ]  

to 

where 

(t2 - 1)" 
1 d" 

n!2n dtn 
P,(<) := - - 

denotes the nth Legendre polynomial. 

These relations generalize results conjectured earlier in the context of the random Landau model 
(Apel 1987, Benedict 1987). 
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